Is Hyper-extensionality Preservable Under Deletions of Graph Elements?
نویسندگان
چکیده
Any hereditarily finite set S can be represented as a finite pointed graph –dubbed membership graph– whose nodes denote elements of the transitive closure of {S} and whose edges model the membership relation. Membership graphs must be hyper-extensional –nodes are pairwise not bisimilar– and bisimilar nodes represent the same hereditarily finite set. It is worth to notice that the removal of even a single node or edge from a membership graph can cause “collapses” of different nodes and, therefore, the loss of hyper-extensionality of the graph itself. With the intent of gaining a deeper understanding of the class of hereditarily finite sets, this paper investigates whether pointed hyper-extensional graphs always contain either a node or an edge whose removal does not disrupt the hyper-extensionality property.
منابع مشابه
Hyper-Extensionality and One-Node Elimination on Membership Graphs
A (hereditarily finite) set/hyperset S can be completely depicted by a (finite pointed) graph GS—dubbed its membership graph— in which every node represents an element of the transitive closure of {S} and every arc represents a membership relation holding between its source and its target. In a membership graph different nodes must have different sets of successors and, more generally, if the g...
متن کاملThe spectrum of the hyper-star graphs and their line graphs
Let n 1 be an integer. The hypercube Qn is the graph whose vertex set isf0;1gn, where two n-tuples are adjacent if they differ in precisely one coordinate. This graph has many applications in Computer sciences and other area of sciences. Inthe graph Qn, the layer Lk is the set of vertices with exactly k 1’s, namely, vertices ofweight k, 1 k n. The hyper-star graph B(n;k) is...
متن کاملMORE ON EDGE HYPER WIENER INDEX OF GRAPHS
Let G=(V(G),E(G)) be a simple connected graph with vertex set V(G) and edge set E(G). The (first) edge-hyper Wiener index of the graph G is defined as: $$WW_{e}(G)=sum_{{f,g}subseteq E(G)}(d_{e}(f,g|G)+d_{e}^{2}(f,g|G))=frac{1}{2}sum_{fin E(G)}(d_{e}(f|G)+d^{2}_{e}(f|G)),$$ where de(f,g|G) denotes the distance between the edges f=xy and g=uv in E(G) and de(f|G)=∑g€(G)de(f,g|G). In thi...
متن کاملCalculating Different Topological Indices of Von Neumann Regular Graph of Z_(p^α )
By the Von Neumann regular graph of R, we mean the graph that its vertices are all elements of R such that there is an edge between vertices x,y if and only if x+y is a von Neumann regular element of R, denoted by G_Vnr (R). For a commutative ring R with unity, x in R is called Von Neumann regular if there exists x in R such that a=a2 x. We denote the set of Von Neumann regular elements by V nr...
متن کاملThe Hyper-Zagreb Index of Graph Operations
Let G be a simple connected graph. The first and second Zagreb indices have been introduced as vV(G) (v)2 M1(G) degG and M2(G) uvE(G)degG(u)degG(v) , respectively, where degG v(degG u) is the degree of vertex v (u) . In this paper, we define a new distance-based named HyperZagreb as e uv E(G) . (v))2 HM(G) (degG(u) degG In this paper, the HyperZagreb index of the Cartesian p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. Notes Theor. Comput. Sci.
دوره 322 شماره
صفحات -
تاریخ انتشار 2016